Exact and Approximate Solutions of Fractional Diffusion Equations with Fractional Reaction Terms
نویسنده
چکیده
In this paper, we consider fractional reaction-diffusion equations with linear and nonlinear fractional reaction terms in a semi-infinite domain. Using q-Homotopy Analysis Method, solutions to these equations are obtained in the form of general recurrence relations. Closed form solutions in the form of the Mittag-Leffler function are perfectly obtained in the case with linear fractional reaction term due to the ability to control the auxiliary parameter h. Series solution is obtained for the case of nonlinear fractional reaction term. Numerical analysis is presented for this case to display the fast convergent rate of the series solution obtained. q-HAM is a relatively simple and powerful method and has advantages over some other methods which we discuss and demonstrate for some initial value problems.
منابع مشابه
DIFFERENTIAL TRANSFORMATION METHOD FOR SOLVING FUZZY FRACTIONAL HEAT EQUATIONS
In this paper, the differential transformation method (DTM) was applied to solve fuzzy fractional heat equations. The elementary properties of this method were given. The approximate and exact solutions of these equations were calculated in the form of series with easily computable terms. The proposed method was also illustrated by some examples. The results revealed that DTM is a highly effect...
متن کاملNumerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method
In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...
متن کاملAn Approximate Analytical Solution of Coupled Nonlinear Fractional Diffusion Equations
In recent years, fractional reaction-diffusion models have been studied due to their usefulness and importance in many areas of mathematics, statistics, physics, and chemistry. In a fractional diffusion equation, the second derivative in the spatial variable is replaced by a fractional derivative. The resulting solutions spread faster than classical solutions and may exhibit asymmetry, dependin...
متن کاملA new fractional sub-equation method for solving the space-time fractional differential equations in mathematical physics
In this paper, a new fractional sub-equation method is proposed for finding exact solutions of fractional partial differential equations (FPDEs) in the sense of modified Riemann-Liouville derivative. With the aid of symbolic computation, we choose the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation in mathematical physics with a source to illustrate the validity a...
متن کاملA New Technique of Reduce Differential Transform Method to Solve Local Fractional PDEs in Mathematical Physics
In this manuscript, we investigate solutions of the partial differential equations (PDEs) arising inmathematical physics with local fractional derivative operators (LFDOs). To get approximate solutionsof these equations, we utilize the reduce differential transform method (RDTM) which is basedupon the LFDOs. Illustrative examples are given to show the accuracy and reliable results. Theobtained ...
متن کامل